Condorcet efficiency: A preference for indifference

نویسندگان

  • William V. Gehrlein
  • Fabrice Valognes
چکیده

The Condorcet winner in an election is the candidate who would be able to defeat all other candidates in a series of pairwise elections. The Condorcet efficiency of a voting procedure is the conditional probability that it will elect the Condorcet winner, given that a Condorcet winner exists. The study considers the Condorcet efficiency of weighted scoring rules (WSR’s) on three candidates for large electorates when voter indifference between candidates is allowed. It is shown that increasing the proportion of voters who have partial indifference will increase the probability that a Condorcet winner exists, and will also increase the Condorcet efficiency of all WSR’s. The same observation is observed when the proportion of voters with complete preferences on candidates is reduced. Borda Rule is shown to be the WSR with maximum Condorcet efficiency over a broad range of assumptions related to voter preferences. The result of forcing voters to completely rank all candidates, by randomly breaking ties on candidates that are viewed as indifferent, leads to a reduction in the probability that a Condorcet winner exists and to a reduction in the Condorcet efficiency of all WSR’s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Condorcet efficiency of scoring rules

In an election, an alternative is said to be a strong Condorcet winner when more than 50% of the voters rank this alternative first in their preference orders. The strong Condorcet efficiency of a voting rule is defined as the probability of electing the strong Condorcet winner, given that such an alternative exists. In this paper, we provide some analytical representations for the strong Condo...

متن کامل

Finding Preference Profiles of Condorcet Dimension $k$ via SAT

Condorcet winning sets are a set-valued generalization of the well-known concept of a Condorcet winner. As supersets of Condorcet winning sets are always Condorcet winning sets themselves, an interesting property of preference profiles is the size of the smallest Condorcet winning set they admit. This smallest size is called the Condorcet dimension of a preference profile. Since little is known...

متن کامل

UNCERTAINTY DATA CREATING INTERVAL-VALUED FUZZY RELATION IN DECISION MAKING MODEL WITH GENERAL PREFERENCE STRUCTURE

The paper introduces a new approach to preference structure, where from a weak preference relation derive the following relations:strict preference, indifference and incomparability, which by aggregations and negations are created and examined. We decomposing a preference relation into a strict preference, anindifference, and an incomparability relation.This approach allows one to quantify diff...

متن کامل

Condorcet Completion Methods that Inhibit Manipulation through Exploiting Knowledge of Electorate Preferences

This paper attacks a problem like the one addressed in an earlier work (Potthoff, 2013) but is more mathematical. The setting is one where an election is to choose a single winner from m (> 2) candidates, it is postulated that voters have knowledge of the preference profile of the electorate, and preference cycles are limited. Both papers devise voting systems whose two key goals are to select ...

متن کامل

Harsanyi’s aggregation theorem with incomplete preferences

We provide a generalization of Harsanyi (1955)’s aggregation theorem to the case of incomplete preferences at the individual and social level. Individuals and society have possibly incomplete expected utility preferences that are represented by sets of expected utility functions. Under Pareto indifference, social preferences are represented through a set of aggregation rules that are utilitaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Social Choice and Welfare

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2001